in which P_{VL} is the proximity needed for far vision and A'_{i} , A''_{i} are the coefficients of the various polynomials depending on the value of the proximity addition $\delta_1 = A_{DD}$ corresponding to the degree of presbyopia of the wearer, the values of these coefficients being substantially as follows:

for $A_{DD} = 1.5 D$:		10
A'0 = 12.532267	A''0 = 16.9452	10
A'1 = -92.695892	A''1 = -106.8394	
A'2 = 305.16919	A''2 = 302.62347	
A'3 = -513.44922	A''3 = -443.97601	
A'4 = 476.63852	A''4 = 362.53815	
A'5 = -247.99097	A''5 = -166.29979	15
A'6 = 67.868942	A''6 = 40.015385	
A'7 = -7.6131396	A''7 = -3.9203446	
$for A_{DD} = 2 D:$		
A'0 = 23.56555	A''0 = 14.368889	
A'1 = -182.77804	A''1 = -87.219223	20
A'2 = 605.05684	A'''2 = 244.35987	20
A'3 = -1 024.1053	A''3 = -337.92626	
A'4 = 962.99613	A''4 = 241.37509	
A'5 = -511.24120	A''5 = -85.757212	
A'6 = 143.7355	A''6 = 12.008102	
A'7 = -16.663562		25
for $A_{DD} = 2.5 D$:		
A'0 = -28.307575	A''0 = 2.874459	
A'1 = 190.37743	A''1 = 11.541159	
A'2 = -445.545294	A''2 = -35.715782	
A'3 = 512.44763	A''3 = 37.849808	30
A'4 = -315.3125	A''4 = -19.0199096	30
A'5 = 99.678413	A''5 = 4.2867818	
A'6 = -12.731333	A''6 = -0.28934118	
$for A_{DD} = 3 D:$		
A'0 = 22.19555	A''0 = 57.071102	
A'1 = -157.74065	A''1 = -357.09277	35
A'2 = 529.74104	$A''2 = 1\ 000.8899$	
A'3 = -918.56382	A''3 = -1 509.5112	
A'4 = 881.73279	A''4 = 1 311.576	
A'5 = -475.73774	A''5 = -657.94254	
A'6 = 135.48897	A''6 = 177.01095	40
A'7 = -15.888513	A''7 = -19.763759	-+ 0

and, for possible intermediate additions whose value δ is between two above-mentioned addition values δ_1 and $\delta_1+0.5$, the envelope curves of these intermediate additions are deduced from the envelope curves corresponding to δ_1 and $\delta_1+0.5$ by the equations:

$$P_{inf}^{\delta}(h) = \left(\frac{\delta - \delta 1}{0.5}\right) \Delta P_{inf} + P_{inf}^{\delta 1}$$

$$P_{sup}^{\delta}(h) = \left(\frac{\delta - \delta 1}{0.5}\right) \Delta P_{sup} + P_{sup}^{\delta 1}$$

with
$$\Delta P_{inf} = P_{inf}^{\delta 1 + 0.5} - P_{inf}^{\delta 1}$$

-continued
$$\Delta P_{sup} = P_{sup}^{\delta 1 + 0.5} - P_{sup}^{\delta 1}.$$

2. Optical lens according to claim 1 wherein the curve representative of its proximity satisfies the following equation:

$$P_{nom} = f(h) = (\sum A_i h^i) + P_{VL}$$

10 with, subject to the same conditions as previously:

	for A _{DD} =	1.5 D:	
	A0 =	1.8983333	
	A1 =	-3.8368794	
15	A2 =	17.797017	
	A3 =	-34.095052	
	A4 =	28.027344	
	A5 =	- 10.464243	
	A6 =	1.464837	
	A7 =	0	
20	for $A_{DD} =$	2 D	
	A0 =	12.637321	
	A1 =	-85.632629	
	A2 =	269.61975	
	A3 =	-425.09732	
	A4 =	361.26779	
25	A5 =	-168.43481	
23	A6 =	40.408779	
	A7 =	-3.8719125	
	for $A_{DD} =$	2.5 D	
	A0 =	—12.716558	
	AI =	100.95929	
30	A2 =	-240.63054	
30	A3 =	275.14871	
	A4 =	-167.1658	
	A5 =	51.982597	
	A6 =	-6.5103369	
	for $A_{DD} =$	3 D	
	A0 =	39.633326	
35	A1 =	-257.41671	
	A2 =	765.31546	
	A3 =	-1 214.0375	
	A4 =	1 096.6544	
	A5 =	566.84014	
	A6 =	156.24996	
40	A7 =	— 17.826136	

- 3. Optical lens according to claim 1 wherein the local value of the proximity gradient dP/dh does not exceed 5 diopters per millimeter continuously over a proximity range greater than 0.25 diopters.
- **4.** Optical lens according to claim 1 wherein the mean proximity gradient G_{VP} for near vision and the mean proximity gradient G_{VL} for distant vision are related as follows:

 $G_{VP}/G_{VL}>2$.

Ophthalmic lens according to claim 1 wherein the surface S_{VP} of the transition area contributing usefully to near vision and the surface S_{VL} of the transition area
contributing usefully to far vision are related as follows:

$$S_{VL}/S_{VP} \ge 3$$
.

50